# SGI Cray Origin2000 Architecture

### Overview

- First product from the merger of SGI & Cray
- Successor to the PowerChallenge Symmetric Multi-Processor, SMP, system
- Origin 2000 is S2MP, Scaled Shared-memory Multi-Processor system
- Also known as Distributed Shared Memory, DSM, system
- Flexible, modular, and scalable architecture
- Memory is physically distributed & virtually shared.

### Overview (Continued)

- Offers ease of Shared-memory programming and scalability of Distributed Memory systems
- Scales in terms of the number of processors, memory size, I/O and memory bandwidth, and system interconnect bandwidth

### Origin2000 Building Blocks

- Built on the R10000 Processor
- The node card contains:
  - two R10000 CPUs
  - external caches
  - memory
  - HUB
  - I/O and interconnect interfaces
- High speed interconnect fabric routers and proprietary links called CrayLinks



## Origin2000 Node Board





## 16 and 32 Processor systems





## 64 Processor system



Directly connect two 32-node systems via Craylink cables using the one free link on each router



#### R10000 Processor

- Runs @ 195 MHz or 250 MHz Clock speed
- 64-bit processor
  - 64-bit registers
  - 64-bit integer and floating point ops. in HW
  - 64-bit virtual address space
  - 40-bit physical address space (1 TB)
- 5 independent fully pipelined functional units:
  - 2 FP units
  - 2 Integer units
  - 1 load/store unit



### R10000 processor (continued)

- 4-way superscalar (up to 4 instr. issued/cycle)
  - up to 2 floating point instr. per cycle
  - up to 2 integer instr. per cycle
  - up to 1 load/store per cycle
- MIPS IV instruction set, binary compatible with earlier MIPS instruction sets
- Dynamic scheduling, Out-of-order instruction execution (when no instruction dependencies)
- Branch prediction



### R10000 Processor (continued)

- Peak Performance (at 195 MHz / 250 MHz)
  - 1 mult-add/cycle (chained) OR 2 FP instructions
  - 390 / 500 MFLOPS: 2 floating point ops. per cycle
- MIPS rating
  - 4 instructions / cycle
  - 780 / 1000 MIPS



### Cache on R10k Processor

#### • L1 Cache

- 32KB floating point data
- 32KB integer/instruction data

#### • L2 Cache

- 4MB per processor
- 2-way set associative; 2 banks each
- cache line 128 bytes
- cache clock rate
  - 2/3 that of CPU for 250 MHz CPU
  - same as that of CPU for 195 MHz CPU



### Memory Subsystem

- Local memory on node card, shared by two CPUs
- Max. of 4 Gbytes of memory per node card
- 4-way interleaved (multiple memory accesses)
- ~ 6% of local node memory in < 32-processor configuration is used by the directory (for cache coherency)
- for systems > 32 processors, additional directory memory is needed (~15% of local memory)



### Cache Coherency Procedure

- Associated with each cache-line size of memory are extra state presence bits which indicate which processors have a copy of that part of memory
- When a processor fetches a cache-lime form memory, it gets the data and the state presence bit for that processor is set
- To modify:
  - Gain exclusive ownership
  - Retrieves the state presence bits
  - Invalidate sent to all other processors
  - Others discard cached copies
  - Other processors get the fresh data from owners cache
- On write to main memory processor relinquishes ownership



#### HUB

- HUB is a crossbar switch on the node card
- Links: the two CPUs, local node memory, system interconnect (through a router), and
  I/O subsystem
- The two CPUs access local <u>shared</u> memory through HUB (similar to a bus-based system)
- Resolves memory addresses requests, and sends to local memory, or to remote memory through router

### CrayLink Interconnect

#### Router

- on each node, connects the HUB to the Craylink interconnect system
- 6-port switch
- Determines most efficient connection to route a message

### Craylink Interconnect

- Links two routers (or HUBs)
- Bi-directional interconnect
- 780 MB/s peak bandwidth in each direction
- ~600 MB/s effective bandwidth for user data



## Programming the Origin 2000

- Supports SGI specific
  - Parallelization directives
  - Shared memory copies
  - References:
    - http://www.arc.unm.edu/Workshop/SMP/SMP\_workshop/SGI\_data\_placement/SGI\_data\_place.html
    - http://www.arc.unm.edu/Workshop/SMP/SMP\_workshop/SGI\_directives/SGI\_directives.html
  - Automatic parallelization
- Suggested use:
  - MPI
  - OpenMP

